Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Math Biosci Eng ; 19(2): 2043-2055, 2022 01.
Article in English | MEDLINE | ID: covidwho-1614070

ABSTRACT

Forecasting future epidemics helps inform policy decisions regarding interventions. During the early coronavirus disease 2019 epidemic period in January-February 2020, limited information was available, and it was too challenging to build detailed mechanistic models reflecting population behavior. This study compared the performance of phenomenological and mechanistic models for forecasting epidemics. For the former, we employed the Richards model and the approximate solution of the susceptible-infected-recovered (SIR) model. For the latter, we examined the exponential growth (with lockdown) model and SIR model with lockdown. The phenomenological models yielded higher root mean square error (RMSE) values than the mechanistic models. When using the numbers from reported data for February 1 and 5, the Richards model had the highest RMSE, whereas when using the February 9 data, the SIR approximation model was the highest. The exponential model with a lockdown effect had the lowest RMSE, except when using the February 9 data. Once interventions or other factors that influence transmission patterns are identified, they should be additionally taken into account to improve forecasting.


Subject(s)
COVID-19 , Epidemics , Communicable Disease Control , Forecasting , Humans , SARS-CoV-2
3.
Clin Infect Dis ; 73(3): e559-e565, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338669

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has rapidly evolved to become a global pandemic, largely owing to the transmission of its causative virus through asymptomatic carriers. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in asymptomatic people is an urgent priority for the prevention and containment of disease outbreaks in communities. However, few data are available in asymptomatic persons regarding the accuracy of polymerase chain reaction testing. In addition, although self-collected saliva samples have significant logistical advantages in mass screening, their utility as an alternative specimen in asymptomatic persons is yet to be determined. METHODS: We conducted a mass screening study to compare the utility of nucleic acid amplification, such as reverse-transcription polymerase chain reaction testing, using nasopharyngeal swab (NPS) and saliva samples from each individual in 2 cohorts of asymptomatic persons: the contact-tracing cohort and the airport quarantine cohort. RESULTS: In this mass screening study including 1924 individuals, the sensitivities of nucleic acid amplification testing with NPS and saliva specimens were 86% (90% credible interval, 77%-93%) and 92% (83%-97%), respectively, with specificities >99.9%. The true concordance probability between the NPS and saliva tests was estimated at 0.998 (90% credible interval, .996-.999) given the recent airport prevalence of 0.3%. In individuals testing positive, viral load was highly correlated between NPS and saliva specimens. CONCLUSION: Both NPS and saliva specimens had high sensitivity and specificity. Self-collected saliva specimens are valuable for detecting SARS-CoV-2 in mass screening of asymptomatic persons.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mass Screening , Saliva , Specimen Handling
4.
Lancet Microbe ; 2(8): e397-e404, 2021 08.
Article in English | MEDLINE | ID: covidwho-1233658

ABSTRACT

BACKGROUND: Quantitative RT-PCR (RT-qPCR) of nasopharyngeal swab (NPS) samples for SARS-CoV-2 detection requires medical personnel and is time consuming, and thus is poorly suited to mass screening. In June, 2020, a chemiluminescent enzyme immunoassay (CLEIA; Lumipulse G SARS-CoV-2 Ag kit, Fujirebio, Tokyo, Japan) was developed that can detect SARS-CoV-2 nucleoproteins in NPS or saliva samples within 35 min. In this study, we assessed the utility of CLEIA in mass SARS-CoV-2 screening. METHODS: We did a diagnostic accuracy study to develop a mass-screening strategy for salivary detection of SARS-CoV-2 by CLEIA, enrolling hospitalised patients with clinically confirmed COVID-19, close contacts identified at community health centres, and asymptomatic international arrivals at two airports, all based in Japan. All test participants were enrolled consecutively. We assessed the diagnostic accuracy of CLEIA compared with RT-qPCR, estimated according to concordance (Kendall's coefficient of concordance, W), and sensitivity (probability of CLEIA positivity given RT-qPCR positivity) and specificity (probability of CLEIA negativity given RT-qPCR negativity) for different antigen concentration cutoffs (0·19 pg/mL, 0·67 pg/mL, and 4·00 pg/mL; with samples considered positive if the antigen concentration was equal to or more than the cutoff and negative if it was less than the cutoff). We also assessed a two-step testing strategy post hoc with CLEIA as an initial test, using separate antigen cutoff values for test negativity and positivity from the predefined cutoff values. The proportion of intermediate results requiring secondary RT-qPCR was then quantified assuming prevalence values of RT-qPCR positivity in the overall tested population of 10%, 30%, and 50%. FINDINGS: Self-collected saliva was obtained from 2056 participants between June 12 and Aug 6, 2020. Results of CLEIA and RT-qPCR were concordant in 2020 (98·2%) samples (Kendall's W=0·99). Test sensitivity was 85·4% (76 of 89 positive samples; 90% credible interval [CrI] 78·0-90·3) at the cutoff of 0·19 pg/mL; 76·4% (68 of 89; 68·2-82·8) at the cutoff of 0·67 pg/mL; and 52·8% (47 of 89; 44·1-61·3) at the cutoff of 4·0 pg/mL. Test specificity was 91·3% (1796 of 1967 negative samples; 90% CrI 90·2-92·3) at the cutoff of 0·19 pg/mL, 99·2% (1952 of 1967; 98·8-99·5) at the cutoff of 0·67 pg/mL, and 100·0% (1967 of 1967; 99·8-100·0) at the cutoff of 4·00 pg/mL. Using a two-step testing strategy with a CLEIA negativity cutoff of 0·19 pg/mL (to maximise sensitivity) and a CLEIA positivity cutoff of 4·00 pg/mL (to maximise specificity), the proportions of indeterminate results (ie, samples requiring secondary RT-qPCR) would be approximately 11% assuming a prevalence of RT-qPCR positivity of 10%, 16% assuming a prevalence of RT-qPCR positivity of 30%, and 21% assuming a prevalence of RT-qPCR positivity of 50%. INTERPRETATION: CLEIA testing of self-collected saliva is simple and provides results quickly, and is thus suitable for mass testing. To improve accuracy, we propose a two-step screening strategy with an initial CLEIA test followed by confirmatory RT-qPCR for intermediate concentrations, varying positive and negative thresholds depending on local prevalence. Implementation of this strategy has expedited sample processing at Japanese airports since July, 2020, and might apply to other large-scale mass screening initiatives. FUNDING: Ministry of Health, Labour and Welfare, Japan.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mass Screening/methods , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity
5.
J Clin Med ; 9(10)2020 Sep 27.
Article in English | MEDLINE | ID: covidwho-905709

ABSTRACT

When a novel infectious disease emerges, enhanced contact tracing and isolation are implemented to prevent a major epidemic, and indeed, they have been successful for the control of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which have been greatly reduced without causing a global pandemic. Considering that asymptomatic and pre-symptomatic infections are substantial for the novel coronavirus disease (COVID-19), the feasibility of preventing the major epidemic has been questioned. Using a two-type branching process model, the present study assesses the feasibility of containing COVID-19 by computing the probability of a major epidemic. We show that if there is a substantial number of asymptomatic transmissions, cutting chains of transmission by means of contact tracing and case isolation would be very challenging without additional interventions, and in particular, untraced cases contribute to lowering the feasibility of containment. Even if isolation of symptomatic cases is conducted swiftly after symptom onset, only secondary transmissions after the symptom onset can be prevented.

6.
J Clin Med ; 9(2)2020 Feb 21.
Article in English | MEDLINE | ID: covidwho-827199

ABSTRACT

To understand the severity of infection for a given disease, it is common epidemiological practice to estimate the case fatality risk, defined as the risk of death among cases. However, there are three technical obstacles that should be addressed to appropriately measure this risk. First, division of the cumulative number of deaths by that of cases tends to underestimate the actual risk because deaths that will occur have not yet observed, and so the delay in time from illness onset to death must be addressed. Second, the observed dataset of reported cases represents only a proportion of all infected individuals and there can be a substantial number of asymptomatic and mildly infected individuals who are never diagnosed. Third, ascertainment bias and risk of death among all those infected would be smaller when estimated using shorter virus detection windows and less sensitive diagnostic laboratory tests. In the ongoing COVID-19 epidemic, health authorities must cope with the uncertainty in the risk of death from COVID-19, and high-risk individuals should be identified using approaches that can address the abovementioned three problems. Although COVID-19 involves mostly mild infections among the majority of the general population, the risk of death among young adults is higher than that of seasonal influenza, and elderly with underlying comorbidities require additional care.

8.
J Clin Med ; 9(3)2020 Feb 27.
Article in English | MEDLINE | ID: covidwho-3387

ABSTRACT

Virological tests have now shown conclusively that a novel coronavirus is causing the 2019-2020 atypical pneumonia outbreak in Wuhan, China. We demonstrate that non-virological descriptive characteristics could have determined that the outbreak is caused by a novel pathogen in advance of virological testing. Characteristics of the ongoing outbreak were collected in real time from two medical social media sites. These were compared against characteristics of eleven pathogens that have previously caused cases of atypical pneumonia. The probability that the current outbreak is due to "Disease X" (i.e., previously unknown etiology) as opposed to one of the known pathogens was inferred, and this estimate was updated as the outbreak continued. The probability (expressed as a percentage) that Disease X is driving the outbreak was assessed as over 29% on 31 December 2019, one week before virus identification. After some specific pathogens were ruled out by laboratory tests on 5 January 2020, the inferred probability of Disease X was over 49%. We showed quantitatively that the emerging outbreak of atypical pneumonia cases is consistent with causation by a novel pathogen. The proposed approach, which uses only routinely observed non-virological data, can aid ongoing risk assessments in advance of virological test results becoming available.

9.
J Clin Med ; 9(2)2020 Feb 24.
Article in English | MEDLINE | ID: covidwho-1873

ABSTRACT

The impact of the drastic reduction in travel volume within mainland China in January and February 2020 was quantified with respect to reports of novel coronavirus (COVID-19) infections outside China. Data on confirmed cases diagnosed outside China were analyzed using statistical models to estimate the impact of travel reduction on three epidemiological outcome measures: (i) the number of exported cases, (ii) the probability of a major epidemic, and (iii) the time delay to a major epidemic. From 28 January to 7 February 2020, we estimated that 226 exported cases (95% confidence interval: 86,449) were prevented, corresponding to a 70.4% reduction in incidence compared to the counterfactual scenario. The reduced probability of a major epidemic ranged from 7% to 20% in Japan, which resulted in a median time delay to a major epidemic of two days. Depending on the scenario, the estimated delay may be less than one day. As the delay is small, the decision to control travel volume through restrictions on freedom of movement should be balanced between the resulting estimated epidemiological impact and predicted economic fallout.

10.
J Clin Med ; 9(2)2020 Feb 04.
Article in English | MEDLINE | ID: covidwho-536

ABSTRACT

From 29 to 31 January 2020, a total of 565 Japanese citizens were evacuated from Wuhan, China on three chartered flights. All passengers were screened upon arrival in Japan for symptoms consistent with novel coronavirus (2019-nCoV) infection and tested for presence of the virus. Assuming that the mean detection window of the virus can be informed by the mean serial interval (estimated at 7.5 days), the ascertainment rate of infection was estimated at 9.2% (95% confidence interval: 5.0, 20.0). This indicates that the incidence of infection in Wuhan can be estimated at 20,767 infected individuals, including those with asymptomatic and mildly symptomatic infections. The infection fatality risk (IFR)-the actual risk of death among all infected individuals-is therefore 0.3% to 0.6%, which may be comparable to Asian influenza pandemic of 1957-1958.

11.
J Clin Med ; 9(2)2020 Jan 24.
Article in English | MEDLINE | ID: covidwho-52

ABSTRACT

A cluster of pneumonia cases linked to a novel coronavirus (2019-nCoV) was reported by China in late December 2019. Reported case incidence has now reached the hundreds, but this is likely an underestimate. As of 24 January 2020, with reports of thirteen exportation events, we estimate the cumulative incidence in China at 5502 cases (95% confidence interval: 3027, 9057). The most plausible number of infections is in the order of thousands, rather than hundreds, and there is a strong indication that untraced exposures other than the one in the epidemiologically linked seafood market in Wuhan have occurred.

12.
J Clin Med ; 9(2)2020 Feb 17.
Article in English | MEDLINE | ID: covidwho-1043

ABSTRACT

The geographic spread of 2019 novel coronavirus (COVID-19) infections from the epicenter of Wuhan, China, has provided an opportunity to study the natural history of the recently emerged virus. Using publicly available event-date data from the ongoing epidemic, the present study investigated the incubation period and other time intervals that govern the epidemiological dynamics of COVID-19 infections. Our results show that the incubation period falls within the range of 2-14 days with 95% confidence and has a mean of around 5 days when approximated using the best-fit lognormal distribution. The mean time from illness onset to hospital admission (for treatment and/or isolation) was estimated at 3-4 days without truncation and at 5-9 days when right truncated. Based on the 95th percentile estimate of the incubation period, we recommend that the length of quarantine should be at least 14 days. The median time delay of 13 days from illness onset to death (17 days with right truncation) should be considered when estimating the COVID-19 case fatality risk.

13.
J Clin Med ; 9(2)2020 Feb 14.
Article in English | MEDLINE | ID: covidwho-965

ABSTRACT

The exported cases of 2019 novel coronavirus (COVID-19) infection that were confirmed outside China provide an opportunity to estimate the cumulative incidence and confirmed case fatality risk (cCFR) in mainland China. Knowledge of the cCFR is critical to characterize the severity and understand the pandemic potential of COVID-19 in the early stage of the epidemic. Using the exponential growth rate of the incidence, the present study statistically estimated the cCFR and the basic reproduction number-the average number of secondary cases generated by a single primary case in a naïve population. We modeled epidemic growth either from a single index case with illness onset on 8 December, 2019 (Scenario 1), or using the growth rate fitted along with the other parameters (Scenario 2) based on data from 20 exported cases reported by 24 January 2020. The cumulative incidence in China by 24 January was estimated at 6924 cases (95% confidence interval [CI]: 4885, 9211) and 19,289 cases (95% CI: 10,901, 30,158), respectively. The latest estimated values of the cCFR were 5.3% (95% CI: 3.5%, 7.5%) for Scenario 1 and 8.4% (95% CI: 5.3%, 12.3%) for Scenario 2. The basic reproduction number was estimated to be 2.1 (95% CI: 2.0, 2.2) and 3.2 (95% CI: 2.7, 3.7) for Scenarios 1 and 2, respectively. Based on these results, we argued that the current COVID-19 epidemic has a substantial potential for causing a pandemic. The proposed approach provides insights in early risk assessment using publicly available data.

SELECTION OF CITATIONS
SEARCH DETAIL